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Thermodynamic Constraints on Multicomponent Catalytic Systems 

I. Limits to First-Order Kinetics 
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The steady state of a catalyst is often dependent on the composition of the reacting system, so 
the kinetics observed in systems far from equilibrium can be very different from equilibrium 
kinetics. Exact constraints on first-order kinetics are derived: limits to individual rate constants are 
found in two component systems only. However, most practical catalysts are shown to perform as 
if the principle of microscopic reversibility could be applied approximately at points away from 
equilibrium. 

INTRODUCTION 

The effects of thermodynamic and other 
axiomatic constraints on the kinetics of 
multicomponent systems have been ana- 
lysed in detail by Wei and Prater (I ). They 
took the reactions in the systems to be first 
order for much of their analysis, although 
more complex kinetics were also consid- 
ered. In both their treatment and other, less 
rigorous, accounts the catalyst is assumed 
to be a constant entity across the full range 
of composition of the system. This is in- 
deed probably true in those catalytic sys- 
tems to which Wei and Prater’s analysis has 
been applied, e.g., butene isomerisation 
over alumina (1, 2), because the chemical 
differences between the components are 
relatively small. However, catalysts cannot 
be assumed to be constant in many systems 
of practical interest. In this paper the limits 
imposed by thermodynamics on the ki- 
netics of systems which follow first-order 
kinetics are derived. Nonlinear systems 
will be analysed in a subsequent paper. 

State of Catalyst 

An equilibrium catalyst can exist only in 
contact with a system of fluid reagents and 
products which is itself at equilibrium. A 
catalyst in contact with a mixture of fluids 

not at equilibrium may be in a state of quasi 
equilibrium with one or more components 
of the mixture, but it cannot then be at 
equilibrium with all the other components. 
Real catalysts, even after prolonged expo- 
sure to equilibrium mixtures, are rarely at 
equilibrium, if only in the sense that the 
solid catalyst must have excess surface to 
possess useful activity. 

Thus a catalyst in contact with a non- 
equilibrium mixture of fluids can at best be 
in a steady state which is essentially con- 
stant for a certain region of composition of 
reactants and products. In the general case 
this steady state is different for different 
regions of the system. The changes occur- 
ring in the catalyst can be physical or 
chemical. Physical changes can be altera- 
tions in the crystal faces exposed, sintering 
of the active phase, etc. Chemical changes 
can vary from changes in chemisorbed 
layers to surface reconstructions, bulk 
phase changes or bulk composition 
changes. 

Bulk changes may lead to discontinuities 
in catalyst performance with variations in 
reactant and product composition. A plot of 
initial rate of reaction over the steady-state 
catalyst against initial reactant composition 
will show ideally a discontinuity at a change 
of solid state, but the formation of defect or 
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nonstoichiometric phases will allow a con- P Point in composition space of sys- 
tinuous change. Clearly, the rate of change tern 
in an isolated system must also vary contin- P’ Equilibrium point in composition 
uously over all possible changes in the space of system 
catalyst because none of these changes can Q Point in composition space of sys- 
occur instantaneously. Nevertheless, some tern 
doubt remains about the general validity of t Time 
an axiom invoked in some treatments of T Absolute temperature 
reaction systems (3): “The rate of change V Liapounov function for system 
of the mass of each species is a continuous Pi Chemical potential of component 
function of all the masses.” Ai in system 

The complete kinetic equation for the pi Standard chemical potential of 
reaction system with a given catalyst component Ai 
should include, implicitly or explicitly, all 13 Unknown function of system 
the consequences of the changes of the 
catalyst steady state. The resulting complex- TREATMENT AND DISCUSSION 

ity would be formidable, so in this treat- Genera, Constraints 
ment it is assumed that a simpler, conven- 
tional rate equation can be used over a The existence of general constraints on 
limited region of the composition space. the kinetics of a multicomponent system as 
The rate equations for different regions of a result of the second law of thermody- 

the same system, including catalyst, are not namics can be demonstrated without refer- 
assumed to be necessarily of the same form ence to the equilibrium state. A direct argu- 

or to involve the same constants. ment is the following. Consider an adiabatic 

4 

a: 

4 

c 
G 
AG 

AGii 

i 
j 
k 
kti 

k’, 

KU 

NOMENCLATURE 

Activity of component Ai 
Activity of component Ai at equi- 
librium 
ith component in multicomponent 
system 
Constant for given system 
Gibbs free energy of system 
Gibbs free energy change for cata- 
lyst reaction 
Gibbs free energy change for reac- 
tion Ai QS Aj 
Number of components in system 
Number of components in system 
Initial rate of catalyst reaction 
First-order rate constant of reac- 
tion Ai + Aj in the neighbourhood 
OfP 
First-order rate constant of reac- 
tion Ai + Aj in the neighbourhood 
OfP’ 
Equilibrium constant of reaction 
A 1 ti Aj 

system of n components, Al, AZ, . . . , A,, 
which react by the following series of reac- 
tions: 

Ai G= A, where i, j = 1, 2, . . . , n 
andi fj. 

Suppose that, for the system at a point P 
and in the neighbourhood of P, a class of 
selective catalysts exists such that catalyst 
(i,]) catalyses reaction Ai + Aj only; cata- 
lyst (j, i), reaction Aj * Ai only, etc., for all 
the values of i and j. It would then be 
possible to change the composition of the 
reaction system for the point P to any 
neighbouring point Q in the composition 
space by the appropriate use, either con- 
jointly or consecutively, of various mem- 
bers of this class of catalysts in an adiabatic 
process. But this is in immediate violation 
of Caratheodory’s formulation of the sec- 
ond law, viz., “It is impossible to reach all 
states in the neighbourhood of any arbitrary 
initial state by an adiabatic process” (4). 
Therefore the proposed class of selective 
catalysts cannot exist. 
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In the more general, and realistic, case of 
a catalyst which promotes, at various rates, 
some (or possibly all) of the reactions in the 
system, a similar argument shows that 
there must be bounds to the rates of the 
catalysed reactions so as to make some 
states in the neighbourhood of P inaccessi- 
ble by any adiabatic, catalysed process. 
These conclusions are, of course, not de- 
pendent in any way upon either the position 
of equilibrium in the reaction system or the 
kinetics of the reaction systems at equilib- 
rium. 

Exact Constraints in Systems with 
First-Order Kinetics 

It is necessary to define the equilibrium 
points of the reaction system (either explic- 
itly, or implicitly by the use of the entropy 
of systems) in order to extend the results of 
the previous section. Let all the reactions in 
the multicomponent system Al, AZ, . . . , 
A, follow first-order kinetics only in the 
region of composition space to be consid- 

ered. No necessary description of the ki- 
netics in any other region is implied. The 
rate of reaction (I, 2) is given by 

da1 - k 
dt d1 - hIa2 

and the rate equation for component Ai is 
given by 

- $ = i (kitai - k,,a,), 
5=1 

(1) 

where values for i = j are omitted. Suppose 
the system undergoes a catalysed, adiabatic 
change at constant pressure from the point 
P. The free energy of the system at P is G, 
where 

G = C i a+i 
i=l 

= C i a&t + RT In ai). (2) 
i=l 

The rate of change of free energy is there- 
fore 

dG -= 
dt 

Ci ($+: + RT(~ + lilai)) 
i=l > 

= 
-C i (bio + RT(l + ln 4) 5$ (hai - k,,a,)) 

i=l 

= -C k( /-Q i (kuai - k+J) . 

i=l 5=1 
(3) 

The second law constraint for irreversible 
reaction is 

dG 
-p 0. 

Therefore the constraint on the system is 

(4) 

as the constant C is positive. 
Although (4) is a single constraint on all 

the values of k,, it must hold for all values 

of all ai in the region around P in which the 
rate equations (1) apply. Thus constraint (4) 
is more severe than it first appears to be. 
Moreover the rate constants must be valid 
for changes at constant volume as well as 
changes at constant pressure, or indeed for 
changes with any other equivalent pre- 
scribed physical restriction. Each of these 
leads to constraints similar to (4) by the use 
of different thermodynamic functions. Wei 
(3) has proposed an axiomatic constraint on 
reaction systems, that an appropriate Lia- 
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pounov function exists. A Liapounov func- 
tion is a function V(a,, az, . . . , an) of fixed 
sign that is everywhere positive (or nega- 
tive) and its time derivative, 

is everywhere negative (or positive). The 
Gibbs free energy, for example, is a Lia- 
pounov function. Wei has shown that the 
axiom is a sufIicient condition for conver- 
gence to equilibrium but as it seems likely 
that not all Liapounov functions corre- 
spond to real systems, the axiom may be 
unnecessarily constrictive. 

The constraints from the principle of 
microscopic reversibility (or the Onsager 
reciprocal relationships) cannot be used 
here as they apply only close to equilibrium 
(5). Thus thermodynamics imposes no con- 
straints on the relative values of the pair of 
rate constants, kU and k,*, except as part of 
relationship (4). In particular, when Ai is in 
excess of equilibrium and Aj is in deficit, 
kuaI is not necessarily greater than &. 

Closer constraints can be deduced for 
various special cases of the multicompo- 
nent, first-order system. If A, is in excess of 
equilibrium and AZ, As, . . . , A,, are all in 
equilibrium ratio, then, 

au al/at > Kfl for i = 2, 3, . . . , n, 
all ada* = K, for i = 2,3, . . . , n and 

i #j,j= 2,3,. . . ,II, 
Pl ‘PI for i = 2, 3, . . . , n, 

Pf = 4% for i = 2, 3, . . . , n, 
j = 2, 3, . . . , n. 

Substitution in relationship (4) gives 

0 > 912 (k,al - kjlaj) 

j=2 

+ fT$ pf( kflaf - hfal + i (bf - hi4 
j=2 

) , 

which simplifies to 

0 < (PI - ~2) 2 Ohal - 54 
J=2 

and, since b1 - p2) is positive, the con- 
straint is 

0 < i (k,a - kJlaj). 
j=2 

Thus for this special case constraint (5) 
involves the rate constants and concentra- 
tions only, in contrast to (4), but again 
without any special relationship between kti 
and kjf. This is found only in a two-compo- 
nent system, i.e., relationship (4) when n = 
2: 

0 < (~1 - 1-42)(~12~1 - kzld. (6) 

If Al is in excess of equilibrium, then p1 > 
p2 and so: 

k,,a, > k,,a,, (7) 

al/a2 > K21. @I 

The relation, kJk12 = K2,, which would be 
derived by the additional use of the princi- 
ple of microscopic reversibility, fits rela- 
tionships (7) and (8) but only as a further 
special case. Even in this special case there 
is no direct relationship between bl, k12, 
and the values of any rate constants in the 
region near equilibrium. 

Approximate Constraints in Systems with 
First-Order Kinetics 

The results of the previous section show 
that the exact constraints allow wide varia- 
tions in the relative values of rate con- 
stants. A consideration of the behaviour of 
systems with practical catalysts, however, 
indicates that the constraints are much 
closer in most real systems. 

Consider first the two-component system 
A, and A2, which reacts by 

A 1 e AZ. 

The rate of reaction near P is then, 

da1 _ da2 - k --- 

-dt dt 
a - k 

12 1 21 2. 
a (9) 

Now suppose that the catalyst, at a steady 
state with the reacting system in the 
neighbourhood of P, is transferred nearly 
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instantaneously to an equilibrium mixture 
of AI and AZ (at the same total pressure, 
volume, and temperature as those at P) at 
concentrations a; and a;, respectively. If 
the catalyst is transferred sufficiently 
quickly the catalyst is initially in the system 
at the equilibrium point P’ in the same state 
as it was at P. After the transfer of the 
catalyst the system is assumed to be adia- 
batic and at constant pressure. Then two 
reactions, which may be coupled, need to 
be considered: 

(i) The reactions of AI and AZ on the 
catalyst, leading initially to displacement 
from equilibrium. 

(ii) Changes in the catalyst from its 
steady state at P to its steady state at P’. 
These can range from changes in adsorbed 
layers to bulk reactions. 

Let the initial rate of any change of the 
catalyst be k, the units of which are moles 
times (catalyst volume))’ (time)-l. If the 
free energy change for the reaction is AG,, 
then the initial rate of free energy change is 
AC, * k. If the variations in kinetics in 
different regions of the system are due 
primarily to changes in the catalyst (rather 
than intrinsic limitations in the kinetic 
equation), then Eq. (9) can be applied, at 
least approximately, to the initial state of 
the transferred catalyst at P’: 

= k,,a; - k,,a;. (10) 

Suppose a displacement of equilibrium 
takes place, leading to a loss of A,. Let the 
free energy change of reaction (1, 2) at P’ 
be AG,,; then the initial rate of free energy 
change due to reaction (1, 2) at P’ is given 
by 

0 (s)(y) < 1. (16) 

Now consider two extreme types of change 
in the catalyst: 

dG 
( > -27 t=o 

= AG,,(k,,a’, - k&). (11) 

AS the system is adiabatic, the initial rate of 
change of free energy must be negative, the 
constraint on the hypothetical experiment 
is 

(i) A change in the adsorbed layer on the 
catalyst surface as a result of the move 
from P to P’. In this case the mass in- 
volved, per unit volume of catalyst, is very 
small, so AG,,/(-AG,) % 1. The rate of 
change of A, over the catalyst may be much 
faster than the catalyst change, but if it is a 
useful catalyst it is unlikely to be much 
slower, so klzai/k,& 1. Thus for this type of 
change, 8 4 1. 

AG, . k, + A.&k& - k,,a;) 5 0. (12) (ii) A bulk change in this catalyst, either a 

Now k, and (k& - k,,a;) are both either 
positive or zero; AG,, is positive since the 
system was at equilibrium. Thus if AG, is 
also positive, these approximations hold: 

k “0, 

Oh; - k,,a;) = 0. (13) 

The first indicates that changes in the cata- 
lyst are negligibly slow, the second that the 
rate constants are related approximately to 
the equilibrium constant, i.e., 

k 12, 4 _ -- 
k Kl2. 

21 4 

Change in the catalyst provides the only 
driving force for displacing AI and A, from 
equilibrium. The value of AG, must be 
negative for this to take place. Relationship 
(12) can then be rewritten as 

k12a; - k,,aL 
kc 

z 1 (15) 

with each of the terms in parentheses in (15) 
being positive. Put 

(1 -+x,,=$, 
21 

where 6 is an unknown function of varia- 
bles of the system. Then, 

(k,z4 - k,,ah) = %k12a; 

and (15) becomes 
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phase change or composition change. The tive argument is the following: the initial 
free energy change associated with this rate of change of free energy in the catalyst 
change would be expected to be of the same is unlikely to be large enough to displace 
order of magnitude as A G12, so the system very far from equilibrium (for 
AG,,/(-AG,) is roughly of the order of the reasons considered above), particularly 
unity. Real catalysts are required to be both when the number of reactions to be driven 
active and stable, i.e., for a substantial is large. Thus the Principle of Microscopic 
catalyst change, k,,ai/k, * 1. Hence, as for Reversibility can be applied, with Eq. (18), 
(i), 8 e 1. in the standard way (e.g., (6)) to give 

Similar considerations also apply to 
changes of an intermediate type, e.g., sin- 
tering. Thus, for all likely changes in practi- 
cal catalysts, 8 Q 1. It is implicit in the 
argument above that system volume and 
catalyst volume are of the same order, as in 
a packed catalyst reactor, but it is readily 
shown that if the catalyst volume is much 
less than the system volume the inequality 
8 4 1 still applies. The reverse case, cata- 
lyst volume > system volume, is unreal. 
Thus, for all the real cases considered, 

k,/k,, = K, for all i, j. (21) 

It is of some interest that for real catalyst 

knlkz = Ku. (17) 

Extension to the multicomponent system 
considered before is straightforward. Sup- 
pose, again, the transfer of the catalyst 
leads to a loss in Ai; then the initial rate is 
given by 

systems the rate constants for any point P 
away from equilibrium are thus related ap- 
proximately to the equilibrium constant as 
if the Principle of Microscopic Reversibility 
were valid at P. It suggests that the Onsager 
reciprocal relations may have wider appli- 
cations in practical catalytic systems than 
has been assumed before. However, it 
should be emphasised that the derivation of 
Eq. (21) does not necessarily imply the 
identity of the kinetics at P and P’ as indeed 
they may well be widely different. 

CONCLUSIONS 

The arguments developed above lead to 
the following conclusions: 

dai - ( > yg = = i (hi - k,&. (18) t 0 j=l 

The thermodynamic constraint is now 

AG,k, + 2 AGU (kua: - kjraj’) s 0. (19) 
5-1 

If Sj is defined by 

( 1 - 8J(k,/kjJ = Ku 

then (19) becomes 

The arguments used above for the two- 
component system can be modified to’ show 
that ($4 1 for allj is a sufficient condition 
for (20) to be satisfied, but it is not a 
necessary condition. However, an altema- 

1. Even when the steady state of a cata- 
lyst in a reacting system is different from 
that in contact with the system at equilib- 
rium, the possible values of rate constants 
are constrained by thermodynamics. 

2. The exact constraint on an adiabatic 
system is that it must move towards equi- 
librium, e.g., for a change at constant pres- 
sure, the free energy of the system must 
decrease. Within this restriction, no 
specific constraints exist on individual rate 
constants except for those in two-compo- 
nent systems. 

3. The properties requires in a useful 
catalyst, i.e., high activity combined with 
catalyst stability, lead to the approximate 
constraints which would be obtained if the 
Principle of Microscopic Reversibility 
(PMR) applied away from equilibrium, i.e., 
ku/kji z Ku. Thus the rate constants ob- 
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tained for practical catalytic systems Catalysis” (D. D. Eiey, P. W. Selwood, and P. B. 
should normally be expected to follow the Weisz, Eds.), Vol. 13, p. 204. Academic Press, 

PMR. New York, 1%2. 
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